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Prediction of Transonic Vortex Flows Using Linear and

Nonlinear Turbulent Eddy Viscosity Models

Robert E. Bartels and Thomas B. Gatski

NASA Langley Research Center

Hampton, VA 23681-0001

Abstract

Three-dimensional transonic flow over a delta wing is investigated with a focus on the effect of transition
and influence of turbulence stress anisotropies. The performance of linear eddy viscosity models and an
explicit algebraic stress model is assessed at the start of vortex flow, and the results compared with
experimental data. To assess the effect of transition location, computations that either fix transition or are
fully turbulent are performed. To assess the effect of the turbulent stress anisotropy, comparisons are made
between predictions from the algebraic stress model and the linear eddy viscosity models. Both transition
location and turbulent stress anisotropy significantly affect the 3D flow field. The most significant effect is
found to be the modeling of transition location. At a Mach number of 0.90, the computed solution changes
character from steady to unsteady depending on transition onset. Accounting for the anisotropies in the
turbulent stresses also considerably impacts the flow, most notably in the outboard region of flow
separation.

Nomenclature

Cf - Skin friction coefficient

Cln - Moment coefficient about pitch axis
CN - Normal force coefficient

Cp - Pressure coefficient, (p - p=)/q=
M - Mach number

q= - dynamic pressure
Re - Reynolds number based on root chord

Introduction

Turbulence models suitable for practical applications have been proposed ranging in complexity

from the zero, one- and two-equation eddy viscosity models to full Reynolds stress closures.

Among those, one- and two-equation models such as the k-e or the k-c0 shear stress transport

(SST) models, solve transport equations for important physical parameters. Other transport
models such as the Spalart-Allmaras (SA) are widely used although based more on empiricism.

None of these model anisotropies in turbulent stresses. Anisotropic eddy-viscosity models have

been developed to overcome this deficiency. Explicit algebraic stress models (EASMs), based on
the initial work of Pope 1 and later generalized by Gatski and Speziale 2, are related to anisotropic

eddy viscosity models, but depend on both rotational and irrotational strain rates. While the

explicit algebraic stress model is a subset of the full Reynolds stress closure, it does retain a key
feature of the full differential form by accounting for the Reynolds stress anisotropies that can

occur in the flow. These anisotropies are reflected through the nonlinear terms in the tensor

representation and directly affect the normal Reynolds stresses. In addition, the Reynolds shear
stress is more accurately represented as well since the effective eddy viscosity is now directly
sensitized to invariants associated with the mean strain rate and rotation rate tensors. Both these

features distinguish the explicit algebraic model from the linear eddy viscosity class of models.
Nevertheless, there are clearly many flows, which do not significantly deviate from the conditions



underwhichlinearmodelshavebeenoptimized.In theseflowsthealgebraicstressmodel,and
themoregeneralclassof nonlineareddyviscositymodels,shouldnotbeexpectedto yieldresults
significantlydifferentthanthelower-orderlineareddyviscositymodels.

This featureis borneout in thecomputationalstudies.Transitionlocationhasbeenfoundto
impactrelativelycomplextwo-dimensionalmultielementairfoil flows,3althoughturbulentstress
anisotropydidnotappearto bea strongfactor. Computationsusinganexplicitalgebraicstress
modelhavebeenperformedfor severalstandardtwo-andthree-dimensionalwingcases.The
authorsof onestudyconcludethat,whileyieldingresultsfor thosecasessimilarto thosethat
wouldbe obtainedwith theJohnsonKing turbulencemodel,anearlyversionof the explicit
algebraicstressmodelappearedto offernoadvantages.4Theseapplicationsmostlikelyrepresent
aclassof flowsfor whichlineareddyviscositymodelshavebeenoptimized.Todate,onlyin the
casesof internalflow with strongcurvatureor complexthree-dimensionalityor involving
shock/boundarylayerinteractionhasanexplicitalgebraicstressmodelbeendemonstratedto
offeraclearimprovementoverlesscomplexmodels.It hasbeenshownforaninternalflowwith
strongcurvaturethatanexplicitalgebraicstressmodelperformsbetterthanone-or two-equation
eddyviscositymodelsandin someinstancescanproduceresultssimilarto a Reynoldsstress
model.5,6Rizzettaassessedtheperformanceof threeexplicitalgebraicReynoldsstressmodels
for thetwo-dimensionalshockseparatedflow overa supersoniccompressionramp.7He found
thatwhiletheGatski-Spezialemodelproducedbetterpressuresandskinfrictionvaluesthanthe
othermodels,allmodelsweredeficientinaccuratelypredictingstressanisotropiesneartheregion
of shock/boundarylayerinteraction.SotiropoulosandVentikascomputedthethree-dimensional
flow througha curvedduct.8Theyconcludethatisotropiceddyviscositymodelsareinadequate
for complexthree-dimensionalflowsandthattheexplicitalgebraicstressmodelof Gatskiand
Spezialeofferedsomeimprovement.

Validationof anexplicitalgebraicstressmodelfor anexternalstronglythree-dimensionalflow
hasnotreceivedmuchattentionsofar. An excellent,if challenging,candidateis thevortexflow
overadeltawing.Experimentalstudiesof deltawingshaveinvestigatedavarietyof phenomena
andrecentlyhaveoffereddetailedflow field turbulencebudgeting.911Chowet al. have used

11
triple-sensor hot wire probes to map the cross stream velocity field of a wing tip induced vortex.

The important result of their study is that Reynolds stress lags the strain rate with in the vortex.
This necessitates a theoretical model that allows for anisotropic eddy viscosity. The performance

of a delta wing is considerably dependent on whether the vortex has burst. For this reason, many

experimental studies have focused on vortex breakdown. Gursul et al. have several studies
attempting to characterize vortex unsteadiness induced by shedding, instability and breakdown. 12
13 Donohoe and Bannink have used surface reflective visualization to investigate vortex

breakdown for a 65-deg sweep delta wing in high subsonic flow.14 They found that the presence

of a terminating shock-wave system interacting with the vortex significantly impacted the overall

flow and can induce breakdown. They present visual data of interactions of the leading edge
vortices with the very complex multiple shocks occurring at high subsonic speeds.

Computational investigations of delta wings have typically focused on geometric or flow
modeling issues, or have attempted to simulate vortex development, instability or breakdown.

Recent efforts have made use of the Euler equations 1516,18, laminar17,18 and turbulent Navier-
Stokes equations with zero- and one-equation turbulence models. 1821 One study found that the

primary vortex location and vorticity level over a delta wing are altered very little by viscous

effects, although viscous solutions exhibited secondary and tertiary vortices not seen in the Euler
solutions. 18 Another work points out that important flow details are obtained only by a viscous

solution.16 For example, significant flow separation over the wing can alter the vortex location.

Turbulent transonic flow computations for another delta wing revealed little difference between



theBaldwin-LomaxandtheJohnson-Kingturbulencemodels.20in anotherstudyof a similar
deltawing, the Degani-Schiffandthe Johnson-Kingmodelsshowedsimilarresults,16 while
resultswiththeBaldwin-Lomaxmodeldifferedsomewhatfromtheothertwomodels.16It isclear
atleastthatthenon-equilibriumeffectsembodiedin theJohnson-Kingmodelwerenotimportant
in thosecases.Yetonewouldexpectthattheisotropiceddyviscosityturbulencemodelsusedin
thepreviousexamplesarenotcompletelyadequatefor complexthree-dimensionalvortexdelta
wingflows.Whetherornottheanisotropiceddyviscosityof anexplicitalgebraiceddyviscosity
modelwill offer an improvementremainsan openquestion.Havingsaidthis, it maybe, as
suggested,thatgrid resolutionandothergrid relatedissuesarepossiblyof asmuchor more
significancethanturbulencemodel._6

Recentexperimentalstudiesusinga simplestrakeddeltawingarediscussedin Refs.22-24and
34.A low speedtestwasinitially performedandreported,followedby atransonictest. Outof
thatcombinedseriesof tests,a largebodyof pressuredata,light sheetvisualizationandsome
particleimagevelocimetrydatahasbeencompiledfor fixedandoscillatingincidencewingsat
severalMachnumbersoverarangeof incidences.Thesectionalandplanformshapesof thelow
speedandtransonicmodelsweresomewhatdifferent.Onekeydifferenceisatransitionstripnear
the leadingedgeof the outboardpanelof the transonicwing. This necessitatesthe useof
turbulencemodelingin thesimulationof thetransonicflow, butalsoallowsananalysisof the
turbulencemodelandtransitionlocationasseparateeffects.Publishedtestresultsofferquite
complexthree-dimensionallow speedandtransonicflow fields.Althoughnodetailedturbulence
datahasyet beenpublished,pressureandvisualizationdatafromthosetestsrevealinteresting
phenomenasuchas self-inducedshock/vortexoscillationand finger shockletsat certain
incidencesatveryhighsubsonicspeeds.Severalcomputationalstudieshavemadeuseof thelow
speeddata,2527however,to date,nostudyhasfocusedontheeffectof theturbulencemodeland
transitionon the simulationof the transonicvortexflow. In the currentstudywe have
investigatedtheeffectof turbulencemodelandtransitionlocationonthestrakeddeltawingflow
field atanincidenceatwhichvortexflowbegins.In particular,theexplicitalgebraicturbulence
modelof GatsldandSpezialeiscomparedwithseverallineareddyviscositymodelsto studythe
effectof shearstressanisotropyontheflow field.

Method

The computer code CFL3D solves the three-dimensional thin-layer Reynolds averaged Navier-

Stokes equations using an upwind finite volume formulation. 2s It is capable of solving multiple

zone grids with one-to-one connectivity. Grid sequencing and local time stepping for
convergence acceleration to a steady state are employed. Upwind-biased spatial differencing is

used for the inviscid terms with flux limiting in the presence of shocks. The viscous terms are

centrally differenced. Cross diffusion terms are neglected. The flux-difference splitting (FDS)
method of Roe 29 is employed to obtain fluxes at cell faces. The turbulence models are solved

uncoupled from the flow equations. Details of the SA and the SST turbulence models can be
found in their respective references. 3°'3_ The form of the Gatski-Speziale EASM model used

includes turbulence anisotropy effects. Additional details of the Gatski-Speziale k-e EASM
model and its implementation in CFL3D are discussed elsewhere. 5

Results

The type of mesh used in the present problem has been dictated by the geometry. Mesh type is of
considerable importance. The computation of the flow about a delta wing was used to show that

the near apex suction peak of a developing inviscid vortex is better resolved with a conical mesh.



32,33Implementationof a conicalor sphericalmeshfor a deltawingwith simplegeometryis
straightforward.However,realisticaircraftconfigurations,with spanwisediscontinuitiesdueto
strake-deltajunction,with partialspanleadingandtrailingedgesurfacesor turbulencestrips,
complicatemodeling,andcanpotentiallyrequiremulti-blockwithseveralgridtypes,or worse,
theuseof agridthatis lessthanoptimalfor simulationof thevortexdevelopment.Oneapproach
is to useachimeramesh.Anotherremedyusedfor astrakeddeltaisamulti-blockmesh.Inthis
approach,thestrakeddeltawingisembeddedin aconicalorsphericalmeshwhiletheremainder
of the meshhasa C-H or O-H topology.25The difficulty in the problempresentlyunder
considerationis theneedto modelthepartialspantransitionstriplocatedat 14.5%behindthe
leadingedgeof theouterdeltawingpanel.In viewof theseobstaclesaC-Hgridisusedherethat
is dividedintomultipleblocks.Thecombinedsurfacegridsfor thiswingareshownin Figures1
and2. An inboardspanblockcoversthestrakeandall surfacegridpointsdownstreamof the
strake.Theoutboardspanblockcoversall thewing surfacegridsoutboardof thestrakedelta
junction. In thisway it is possibleto turnon theturbulenceproductiontermsovertheentire
outboarddeltawingpanelaftof thegridlineatthetransitionstriplocation.Ontheotherhand,the
convectiveanddiffusivetermsof the one-andtwo-equationturbulencemodelsare included
throughouttheflow field.

Figure2presentstheplanformandexperimentalandcomputedpressuresectionlocations.There
arefour chordwisesectionson the outboardwingandthreespanwisesectionsspanningthe
straketo outerwing panel.Mostof thedatain this reportarefor pressurecoefficientat the
spanwiseandchordwiselocations.Thecasesanalyzedin references22,23and34coverangles
of attackfrom zeroto beyondvortexbursting,at Machnumbersof 0.225,0.60and0.90.
CunninghamandGeurtsfind a dramaticshift in thecharacterof the flow betweenthe Mach
numbersof 0.60and0.90.34Theappearanceof a shockat the high subsonicMachnumber
impactsbothoverallflow field developmentandthebehaviorof theforcecoefficients.Twoof
themostsignificanteventsat thehigherMachnumberareleadingedgeandshockinduced
trailingedgeseparations.Theseappearatanangleof attackatwhichvortexflowbegins,andit is
just theseconditionsthatwill beconsideredin thepresentreport.As summarizedin Table1,the
experimentaldataandcomputedsolutionsareatfreestreamMachnumbersof 0.60and0.90and
aReynoldsnumberof 8million. Otherthantheimportantinfluencesof Machnumberandangle
of attack,severalkeyfactorshavebeenfoundto influencethepresentcomputationalresults.
Theyarethegrid,turbulenttransitionandturbulencemodel.Thefollowingsectionsdiscussthese
importantaspectsin turnandtheirinfluenceonthesolutionsatthetwoMachnumbers.

Grid sensitivity

In the present computations a moderately refined mesh has been used in most cases owing to the
additional effort required for the turbulence models used here. This is called the standard grid.

The multi-block standard grid is composed of 4 blocks, which if combined into a single mesh

would comprise a C-H mesh with 153×65×57 grids in the stream wise, spanwise and normal

directions. Wall spacing is 1×10 7 and 1×10 6 at the leading and trailing edges, respectively. The

grid extends to 5.5 chord lengths away from the wing. For the purpose of assessing grid

convergence, a fine grid has also been used. It has combined dimensions of 233×105×89 grids in

the stream wise, spanwise and normal directions. This mesh is divided into six blocks. A medium
and coarse grid were constructed by eliminating every other grid point from each of the blocks in

the fine and medium grids.

A grid resolution study was conducted using the fine, medium and coarse grids, corresponding to

cases 1-3 in Table 1. Initial computations with the fine grid modeling the transition location at the
experimental location of 14.5 % chord aft of the leading edge over the entire strake and delta wing



resultedin spatialoscillationsin the sectionpressuredistributionsthat did not matchthe
experimentaldata.After severalcomputationsin whichtransitionlocationwasmovedforwardof
theexperimentallocation,afinalcomputationaltransitionlocationfixedat6%chordwaschosen,
andis usedin all of thecomputationsthatfollow. Forpurposesof thegridresolutionstudy6%
chordtransitionwasusedovertheentirestrakedeltawing. As will bediscussedin thenext
section,all othercomputationsmodelingtransitionwiththestandardgridincludedalargeregion
of laminarflowoverthestrake.

A surveyof theresultsin Table1for cases1-6,showthatthecomputedforcecoefficientsat a
Machnumberof 0.60,usingthefineandthestandardgrids,matchedtheexperimentalvalues
quitewell. Thisis incontrastto thecomputedforcecoefficientsataMachnumberof 0.90using
the standardmesh,for whichthe momentcoefficientin eachcasewas lessthanhalf the
experimentalvalue.The difficulty in matchingmomentcoefficientat this Machnumberis
probablydueto thefactthatthereisasignificantamountof shock-inducedseparation.

Figures3-4presentthepressuredistributionsresultingfromthegridresolutionstudy. At each
pressuresection,thetrendwith successiverefinementof thegrid is to matchmorecloselythe
experimentaldata. Thepressurepeaksshownin sections1,5 and6 aredueto thestrakeand
wingvortexdevelopment.Thewingvortexin theearlystagesof developmentis tightlybound,
asseenin theverysharplyfocusedpressurepeaksof sections1and6. Thefinestmeshbetter
capturestheconfinementof thewingvortexin theearlystagesof development,althoughit isnot
adequatelysimulatedbyanyof thegrids. However,downstreamdevelopmentsof thewingand
strakevorticesarecapturedquitewellbythefinemesh.Thiscanbeseenin thepressurepeaksof
section7. An importantfeatureto noticeis thatvortexlocationis sensitiveto gridresolution.
Boththestrengthandlocationof thestrakeandwingvorticesarebettersimulatedwiththemore
refinedgrid. Thisis clearlyexemplifiedbythepressuresof section7,whereboththewingand
strakevortexlocationsandstrengthsarereproducedquitewell with thefinegrid. This is also
clearlyindicatedin section5wherethefinemeshreproducestheearlystrakevortexstrengthand
locationverywell. In general,theconclusionof thisgridstudyis thatwhileeventhefinemesh
doesnotadequatelyresolveseveralportionsof theflow field,muchof theflow field ismodeled
quitewell by the finestmesh. Thestandardgrid usedin all of theremainingcomputations
representsaresolutionthatisbetweenthatof themediumandfinegrids.

Effect of transition

Computations using the standard grid with several combinations of transition from fully

turbulent to transition outboard with largely laminar strake panel were performed. Fully

turbulent computations included turbulence production terms throughout the flow field. The
computations including the effect of the partial span transition strip were accomplished via multi-

block as discussed earlier. A transition strip on the outer panel was modeled in most of the
computations by turning off turbulence production terms forward of 6% chord. Other than for the

grid resolution study and the computations that were fully turbulent, the strake region was

computed with the turbulence production terms turned on at the 95% chord location. The location
of 95% was chosen after computations using the standard grid with transition located at the

leading edge, 72% and 95% chord. This last transition location for the inboard panel resulted in

the best match with the experimental data at a Mach number of 0.90. Furthermore, the
computations in which transition was at the leading edge (case number 8) and at 72% chord

reached a steady state, while the solution at 95% (case number 11) resulted in a limit cycle

oscillatory solution. This aspect of the solution will be discussed subsequently.



Consideringthe resultsof cases7-11,summarizedin Table 1, it canbe concludedthat the
modelingof transitionsignificantlyimprovesthecomparisonof forceandmomentcoefficients
withexperiment.Thedataof Figures5and6atanangleof attackof 9.38degreesarepresented
for comparisonwith theresultsatanangleof attackof 11.39degreesin Figures9 and10. The
experimentaldatashowachangein characterfromquasisteadyat9.38degreesto unsteadylimit
cycleoscillationof theshockandvorticesat anangleof attackof 11.39degrees.34Thisshift in
thenatureof thesolutionhasalsobeencapturedin thepresentcomputations.Thesolutionat
9.38degreesanda Machnumberof 0.90,whichincludesthemodelingof transition,reacheda
fully steadystate. This solutionis shownin Figures5 and6. Thesolutionwith identical
transitionandturbulencemodeling,at 11.94degreesandaMachnumberof 0.60alsoreacheda
steadystate.All of thefully turbulentsolutionsat 11.39degrees,showninFigures7 and8,also
reachedasteadystate.

Theresultsof asolutionat 11.39degreesangleof attack,modelingtransitionwiththeSAmodel,
areshownin Figures9 and10. Thissolutionreachedanunsteadylimit cycleoscillation.The
mean,minimumandmaximumpressuresdistributedoverthesevensectionsshownin Figures9
and 10, show that transitionmodelingdoessignificantlyimprovethe computedpressure
distributionsrelativetoexperimentcomparedtothefully turbulentsteadycomputationsshownin
Figures7 and8. Thiseffectis mostnoticeableat sections1, 3,4and7. Theseresultsalso
indicatethattheunsteadinessin thecomputedsolutionis almostentirelyconfinedto thestrake
panelregion.CunninghamandGeurtsdiscussthelimit cycleoscillationof theflow fieldatthis
angleof attack.34Theypointoutthattheexperimentalunsteadinessappearsto bemostlyoutboard
of andincludingsection1. In thisrespecttheunsteadinessin thecomputedsolutiondoesnot
matchtheexperiment.

Effectof turbulence model

Figures 11-12 present computed pressure distributions corresponding to cases 4-6 in Table 1. In

these cases transition is modeled. Computed results using the explicit algebraic stress model of

Gatsld and Speziale 2 (EASM), the Spalart-Allmaras model (SA), the k-c0 shear stress transport

model (SST) are compared with experiment. At a Mach number of 0.60 compressibility and
transonic effects can be expected to be just beginning to influence the flow field. The effect of the

transonic shock and shock separation (SITES - shock induced trailing edge separation) apparent

at Mach number of 0.90 do not yet appear in the pressure distributions at this Mach number. At
a Mach number of 0.60 (Figures 11-12), the pressure distributions produced by all of the

turbulence models fairly accurately reproduce the experimental data. The pressure sections 1 and

2 in Figure 11 are the locations at which the most noticeable differences in turbulence model
appear, although it is unclear which model best reproduces the data. At section 1 the SA model

offers a somewhat better match with the experimental data, although at section 2 the EASM

model more accurately reproduces vortex strength and/or location. This region of the flow field
clearly requires better grid resolution.

In contrast to the flow field at the lower Mach number, clear evidence of a shock is seen in the

pressures distributions of Figures 7 and 8 at a Mach number of 0.90, including the effect of

SITES and leading edge separation. Cases 8-11 from Table 1 are at a Mach number of 0.90. At

this Mach number there is a more pronounced difference among turbulence models. Among the
fully turbulent force and moment coefficient results, the EASM model most closely matches

experiment. Figures 7 and 8 show that the EASM model offers improved pressure distributions
in comparison with experiment at sections 2-4 and 7. These sections are in the outboard and

trailing edge regions of the wing. As will be seen, these are areas in which there are large three-

dimensional regions of boundary layer separation. The remaining pressure distributions in



Figures13 and 14comparethe fully turbulentEASM steadypressureswith the SA mean
pressuresmodelingtransitionatthehigherMachnumber.Resultsfor theoutboardsections3and
4 showthatthefully turbulent EASM model offers additional improvement over the SA results
that had been improved by including transition. A solution was also computed with the EASM

model that includes the effect of leading edge transition and the largely laminar strake region.

This solution was unsteady although it was not possible to reach a fully converged limit cycle
solution due to the computer time required. Instantaneous pressure distributions resulting from

this solution are shown in Figures 15 and 16. In some regions this solution appears promising.

The comparison of the pressure distribution at section 7 with experiment is excellent over all but
the strake region and much improved in comparison with Figure 14. The pressures at sections 2,

3 and 4 are also in excellent agreement with experiment over most of the chord length. The

puzzling excursions in the computed pressures may have been due to an extremely slowly
converging solution, although that can only be conjectured from the results obtained.

Analysis of computed flow field

Figures 17-19 present experimental and computed flow field visualizations at laser light sheet

locations 8 and 9 at Mach numbers of 0.60 and 0.90. The computed contours are for pressure
coefficient. Pressure coefficient contours should best match the laser light sheet visualizations

since water vapor is expected to condense in the supersonic stream and move toward regions of

minimum pressure. The accumulation of water vapor gives the dark regions in the negative
images. Each of the turbulence models at both Mach numbers gave strake and delta wing vortex

locations that are relatively close in location to experiment. At a Mach number of 0.60 there is
little difference between the turbulence models, and both show vortex locations quite close to that

of experiment. At a Mach number of 0.90, the development of strake vortex is clearly seen to

occur between 9.38 and 11.39 degrees angle of attack. (Figures 18 and 19) There are also clear
differences evident between the turbulence models and between the fully turbulent and

transitioned results. One striking difference is that the vortex core is not as focused when

transition is modeled. This can be observed in the spreading and weakening of the minimum in
pressure in the transition modeled results compared with those that are fully turbulent.

Strengthening and expanding of the pressure minimum is evident as the angle of attack changes

from 9.38 to 11.39 degrees. This can be seen in the experimental light sheets by comparing
Figures 18 and 19 and coincides with the onset of vortex flow. An interesting feature also seen in

the experimental laser light sheet image of Figure 19 is the vapor trail spreading from the strake

vortex outboard toward the wing vortex. This feature is discussed at length by Cunningham and
Geurts. 34They suggest that this "gull wing" pattern is due to a shear layer interface between the

"outer flows which see the spanwise flow potential propagating from the inboard strake region,

and an inner supersonic flow near the wing surface." (p. 40) In Figure 20, computed spanwise
velocity contours at laser light sheet 9 confirm the presence of a spanwise shear layer between the

strake vortex and the wing vortex, where, however, the computed outer flow is directed inboard.

Figure 21 presents skin friction contours (negative skin friction appearing in darker shades)

computed with the different turbulence models at Mach number 0.90 and 11.39 angle of attack.
The SA model data computed with transition are instantaneous values. Leading edge separation

appears experimentally just below 11 degrees while SITES appears between 10.4-10.5 degrees. 34

Both the leading and trailing edge separations and the shock-induced separation on the inboard
section are revealed in all of the results. The extent and depth of the reversed flow regions

computed with the anisotropic eddy viscosity model is much different than that computed by any

of the linear eddy viscosity models. The extent of the in board shock separation is much smaller
in the EASM results in comparison to the linear eddy viscosity results. The strength of the

reversed flow in the leading edge area of the outboard wing is also much stronger in the EASM



results.Thisisevidentin theskinfriction(atpressuresection3),showninFigure22. Thisis the
regioninwhichtheEASMmodelconsistentlyproducedbetterpressuredistributionswithrespect
to theexperimentalvaluescomparedwith the lineareddyviscositymodels.Theskinfriction
distributionsproducedby thelineareddyviscositymodels generallygrouptogetherwhilethe
skinfrictionproducedbythenonlineareddyviscositymodelisdistinctlydifferentovertheentire
chordlength.

Conclusions

A computational study of the effect of grid resolution, turbulent transition location and anisotropy
of turbulent stresses has been performed at transonic Mach numbers of 0.60 and 0.90 using the

transonic straked delta wing. This study has shown that all three effects play important but

different roles. Grid resolution has been found to be important at the lower Mach number. It is
expected that it will be important at any Mach number since, proper development of the strake

and wing vortices requires adequate grid resolution. Down stream vortex development of the

solution with the finest grid, and in areas away from the vortex, however, appeared to match
experiment very well at the lower Mach number. The simulation of transition location has a very

strong effect on the resulting pressure distribution for the straked delta wing at a high subsonic

Mach number at the start of vortex flow. The effect of transition is less evident but not completely
insignificant at the low transonic Mach number as well. With respect to force coefficients, all

turbulence models match well at the lower Mach number, while at the high subsonic Mach

number, all are significantly off in moment. This is likely due to the fact that leading and shock
induced trailing edge separation are key effects at the high subsonic Mach number at the start of

vortex flow. However, with regard to force coefficients, several points can be made. Transition

appears as an important contributor, in that the SA model with transition and laminar inboard
section yields a moment coefficient closer to experiment than does the fully turbulent simulation

with the same model. The fully turbulent EASM results also yielded significant improvement in
moment coefficient at the higher Mach number. This would be expected if the outboard leading

edge and in board shock separations include significant Reynolds stress anisotropies. With regard

to pressure distributions, the fully turbulent field using the EASM model gives somewhat better
pressures in the wing tip region at the higher Mach number. Even greater improvement is seen in

the EASM results that include the effect of transition, although the reason for isolated anomalous

excursions in pressures has yet to be resolved. At the high subsonic Mach number, the computed
flow field simulation that included transition strip location and laminar strake flow has resulted in

a limit cycle flow oscillation, whereas the fully turbulent computations with all the turbulence

models reached a steady state solution. This coincides with the onset of unsteadiness in the
experimental data. Although this is encouraging, the computed region of unsteadiness differs

from the experiment. Further investigations are needed to more accurately reproduce the

experimental phenomena observed. Otherwise, several aspects of the experimental data were
reproduced well by the computations. The onset of vortex flow was computed well by all the

turbulence models. The existence of the postulated spanwise shear layer between the strake and

delta wing vortices was also confirmed by the present computations.
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Table1.

Case M_ o_ CN CN

No. (Deg.) (Calc.) (Exp.)

1 0.601 11.94 0.680 0.65

2 0.601 11.94 0.663 0.65

3 0.601 11.94 0.647 0.65

4 0.601 11.94 0.650 0.65

5 0.601 11.94 0.656 0.65

6 0.601 11.94 0.640 0.65

7 0.900 9.38 0.594 0.64

8 0.899 11.39 0.720 0.69

9 0.899 11.39 0.709 0.69

10 0.899 11.39 0.697 0.69

0.690
11 0.899 11.39 0.69

Mean value

Case data

Cm Cm

(Calc.) (Exp.)

0.0231 0.030

0.0275 0.030

0.0292 0.030

0.0281 0.030

0.0300 0.030

0.0280 0.030

0.00164 0.005

0.00228 0.013

0.00378 0.013

0.00533 0.013

0.00589 0.013

Comp. Turb.
Flow Model Grid
Type & Transition

steady SA (trans) coarse

steady SA (trans) medium

steady SA (trans) fine

steady SA (trans) standard

steady SST (trans) standard

steady EASM (trans) standard

steady SA (trans) standard

steady SA (full turb) standard

steady SST (full turb) standard

steady EASM (full turb) standard

unstdy SA (trans) standard
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Figure 3. Chord wise pressure coefficient distributions at span sections.

M = 0.601, o_ = 11.94 degrees, Re = 8 million. Transition modeled.
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M = 0.601, o_ = 11.94 degrees, Re = 8 million. Transition modeled.
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Figure 5. Chord wise pressure coefficient distributions at span sections.

M = 0.900, o_ = 9.38 degrees, Re = 8 million. Transition modeled.
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M = 0.900, o_ = 9.38 degrees, Re = 8 million. Transition modeled.
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M = 0.899, o_ = 11.39 degrees, Re = 8 million. Fully turbulent.
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M = 0.899, o_ = 11.39 degrees, Re = 8 million. Fully turbulent.
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M = 0.601, o_ = 11.94 degrees, Re = 8 million. Transition modeled.
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Figure 12. Spanwise pressure coefficient distributions at chord sections.

M = 0.601, o_ = 11.94 degrees, Re = 8 million. Transition modeled.
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Figure 13. Chord wise pressure coefficient distributions at span sections.

M = 0.899, o_ = 11.39 degrees, Re = 8 million.
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Figure 14. Spanwise pressure coefficient distributions at chord sections.

M = 0.899, o_ = 11.39 degrees, Re = 8 million.
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Figure 15. Chord wise pressure coefficient distributions at span sections.

M = 0.899, o_ = 11.39 degrees, Re = 8 million. Transition modeled
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Figure 16. Spanwise pressure coefficient distributions at chord sections.

M = 0.899, o_ = 11.39 degrees, Re = 8 million. Transition modeled
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d) Experiment (sheet 8) e) EASM model
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f) Spalart-Allmaras model

Figure 17. Experimental and computed laser light sheet images.

M = 0.601, o_ = 11.94 degrees, Re = 8 million. Transition modeled.
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Figure 18. Experimental and computed laser light sheet images.

M = 0.900, o_ = 9.38 degrees, Re = 8 million. Spalart-Allmaras model.

Transition modeled.
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c) S-A model (fully turbulent) d) S-A model (trans., snap shot)

Figure 19. Experimental and computed laser light sheet images.

M = 0.899, o_ = 11.39 degrees, Re = 8 million.
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Figure 20. Spanwise flow contours. (dashed lines - tip ward flow)

M = 0.899, _ = 11.39 degrees, Re = 8 million. SA, fully turbulent.

a) Spalart-Allmaras (fully turb) b) k-co SST (fully turb)

Figure 21. Negative skin friction contours.

M = 0.899, _ = 11.39 degrees, Re = 8 million.
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c) k-e EASM (full turb) d) Spalart-Allmaras (trans)

Figure 21. (Continued) Negative skin friction contours.

M = 0.899, _ = 11.39 degrees, Re = 8 million.
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Figure 22. Skin friction coefficient versus x (Section 3).

M = 0.899, _ = 11.39 degrees, Re = 8 million.
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